Monday, June 13, 2011
Interesting New Science
http://arxiv.org/abs/1106.1678
Analysis of Experiments Exhibiting Time-Varying Nuclear Decay Rates: Systematic Effects or New Physics?
Authors: Jere H. Jenkins, Ephraim Fischbach, Peter A. Sturrock, Daniel W. Mundy
Abstract: Since the 1930s, and with very few exceptions, it has been assumed that the process of radioactive decay is a random process, unaffected by the environment in which the decaying nucleus resides. There have been instances within the past few decades, however, where changes in the chemical environment or physical environment brought about small changes in the decay rates. But even in light of these instances, decaying nuclei that were undisturbed or un-"pressured" were thought to behave in the expected random way, subject to the normal decay probabilities which are specific to each nuclide. Moreover, any "non-random" behavior was assumed automatically to be the fault of the detection systems, the environment surrounding the detectors, or changes in the background radiation to which the detector was exposed. Recently, however, evidence has emerged from a variety of sources, including measurements taken by independent groups at Brookhaven National Laboratory, Physikalisch-Technische Bundesanstalt, and Purdue University, that indicate there may in fact be an influence that is altering nuclear decay rates, albeit at levels on the order of $10^{-3}$. In this paper, we will discuss some of these results, and examine the evidence pointing to the conclusion that the intrinsic decay process is being affected by a solar influence.
arXiv:1105.1335v2
Further Evidence Suggestive of a Solar Influence on Nuclear Decay Rates
Authors: Peter A. Sturrock, Ephraim Fischbach, Jere H. Jenkins
Abstract: Recent analyses of nuclear decay data show evidence of variations suggestive of a solar influence. Analyses of datasets acquired at the Brookhaven National Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB) both show evidence of an annual periodicity and of periodicities with sidereal frequencies in the neighborhood of 12.25 year^{-1} (at a significance level that we have estimated to be 10^{-17}). It is notable that this implied rotation rate is lower than that attributed to the solar radiative zone, suggestive of a slowly rotating solar core. This leads us to hypothesize that there may be an "inner tachocline" separating the core from the radiative zone, analogous to the "outer tachocline" that separates the radiative zone from the convection zone. The Rieger periodicity (which has a period of about 154 days, corresponding to a frequency of 2.37 year^{-1}) may be attributed to an r-mode oscillation with spherical-harmonic indices l=3, m=1, located in the outer tachocline. This suggests that we may test the hypothesis of a solar influence on nuclear decay rates by searching BNL and PTB data for evidence of a "Rieger-like" r-mode oscillation, with l=3, m=1, in the inner tachocline. The appropriate search band for such an oscillation is estimated to be 2.00-2.28 year^{-1}. We find, in both datasets, strong evidence of a periodicity at 2.11 year^{-1}. We estimate that the probability of obtaining these results by chance is 10^{-12}.
http://www.springerlink.com/content/nm71615v85777272/
This link requires a subscription to get the original article.
Time-Dependent Nuclear Decay Parameters:
New Evidence for New Forces?
E. Fischbach · J.B. Buncher · J.T. Gruenwald ·
J.H. Jenkins · D.E. Krause · J.J. Mattes · J.R. Newport
Abstract This paper presents an overview of recent research dealing with the question of whether nuclear decay rates (or half-lives) are time-independent constants of nature, as opposed to being parameters which can be altered by an external perturbation. If the latter is the case, this may imply the existence of some new interaction(s) which would be responsible for any observed time variation. Interest in this question has been renewed recently by evidence for a correlation between nuclear decay rates and Earth-Sun distance, and by the observation of a dip in the decay rate for 54Mn coincident in time with the solar flare of 2006 December 13.We discuss these observations in detail, along with other hints in the literature for time-varying decay parameters, in the framework of a general phenomenology that we develop. One consequence of this phenomenology is that it is possible for different experimental groups to infer discrepant (yet technically correct) results for a half-life depending on where and how their data were taken and analyzed. A considerable amount of attention is devoted to possible mechanisms which might give rise to the reported effects, including fluctuations in the flux of solar neutrinos, and possible variations in the magnitudes of fundamental parameters, such as the fine structure constant and the electron-to-proton mass ratio. We also discuss ongoing and future experiments, along with some implications of our work for cancer treatments, 14C dating, and for the possibility of detecting the relic neutrino background.
-----------------------------------------------------
In accordance with Title 17 U.S.C. Section 107, any copyrighted work in this message is distributed under fair use without profit or payment for non-profit research and educational purposes only.
[Ref. http://www.law.cornell.edu/uscode/17/107.shtml]
If you find this material of value, please donate to OBRL: http://www.orgonelab.org/donation
Or, purchase books on related subjects from our on-line bookstore: http://www.naturalenergyworks.net